Документ подписан простой электронной подписью Информация о владельце:

ФИО: Ткачева Лариса Владимировна

Должность: И.о. директора

Дата подписания: 16.09.2025 21:29:29 Уникальный программный ключ:

6193ebd093351b6251af28b8e5ef9cbb3f05df49

Приложение к ООП-ППССЗ по специальности 23.02.09 Автоматика и телемеханика на транспорте (железнодорожном транспорте)

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ ОП.02 ЭЛЕКТРОННАЯ ТЕХНИКА

для специальности
23.02.09 Автоматика и телемеханика на транспорте
(железнодорожном транспорте)

Базовая подготовка среднего профессионального образования (год начала подготовки:2025)

СОДЕРЖАНИЕ

					CTP.
1.	ПАСПОРТ	РАБОЧЕЙ	ПРОГРАММЫ	УЧЕБНОЙ	3
	СЦИПЛИНЫ				
			Е УЧЕБНОЙ ДИСІ		5
3.	УСЛОВИЯ	РЕАЛИЗАЦИИ	І ПРОГРАММЫ	УЧЕБНОЙ	12
ДИ	СЦИПЛИНЫ				
4.	контроль	И ОЦЕНКА	РЕЗУЛЬТАТОВ	ОСВОЕНИЯ	14
y 4]	ЕБНОЙ ДИСЦ	иплины			
5. П	ЕРЕЧЕНЬ ИС	ПОЛЬЗУЕМЫХ	х методов обуч	РЕНИЯ	16

1 ПАСПОРТ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ

1.1 Область применения рабочей программы

Рабочая программа учебной дисциплины **ОП.02** Электронная техника является частью программы подготовки специалистов среднего звена (далее - ППССЗ) в соответствии с ФГОС СПО для специальности <u>23.02.09</u> Автоматика и телемеханика на транспорте (железнодорожном транспорте).

При реализации рабочей программы могут использоваться различные образовательные технологии, в том числе дистанционные образовательные технологии, электронное обучение.

Рабочая программа учебной дисциплины может быть использована в профессиональной подготовке, переподготовке и повышении квалификации рабочих по профессиям:

Электромонтер по обслуживанию и ремонту устройств сигнализации, централизации и блокировки;

Электромонтажник по сигнализации, централизации и блокировке.

1.2 Место учебной дисциплины в структуре ОПОП-ППССЗ:

Учебная дисциплина ОП.02 Электронная техника является частью общепрофессионального цикла.

1.3 Планируемые результаты освоения учебной дисциплины:

- 1.3.1 В результате освоения учебной дисциплины обучающийся должен уметь:
- определять и анализировать основные параметры электронных схем и по ним устанавливать работоспособность устройств электронной техники;
 - производить подбор элементов электронной аппаратуры по заданным параметрам

знать:

- сущность физических процессов, протекающих в электронных приборах и устройствах;
- принципы включения электронных приборов и построения электронных схем;
- типовые узлы и устройства электронной техники.
- 1.3.2 В результате освоения учебной дисциплины обучающийся должен сформировать следующие компетенции:

-обшие:

- ОК.01 Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам
- OK.02 Использовать современные средства поиска, анализа и интерпретации информации и информационные технологии для выполнения задач профессиональной деятельности

-профессиональные:

- ПК 1.1 Анализировать работу станционных, перегонных, микропроцессорных и диагностических систем автоматики по принципиальным схемам
- ПК 1.2 Выполнять разработку монтажных схем устройств сигнализации, централизации и блокировки, железнодорожной автоматики и телемеханики по принципиальным схемам
- ПК 1.3 Производить измерения параметров приборов и устройств сигнализации, централизации и блокировки.

- ПК 3.2 Осуществлять регулировку и проверку работы устройств и приборов сигнализации, централизации и блокировки.
- 1.3.3 В результате освоения программы учебной дисциплины реализуется программа воспитания, направленная на формирование следующих личностных результатов (ЛР):
- Заботящийся о защите окружающей среды, собственной и чужой безопасности, в том числе цифровой;
- Готовность обучающегося соответствовать ожиданиям работодателей: ответственный сотрудник, дисциплинированный, трудолюбивый, нацеленный на достижение поставленных задач, эффективно взаимодействующий с членами команды, сотрудничающий с другими людьми, проектно мыслящий;
- Способный к генерированию, осмыслению и доведению до конечной реализации предлагаемых инноваций;
- Проявляющий способности к непрерывному развитию в области профессиональных компетенций и междисциплинарных знаний.

2. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

2.1. Объем учебной дисциплины и виды учебной работы

Очная форма обучения

Вид учебной работы	Объем часов
Максимальная учебная нагрузка (всего)	112
Обязательная аудиторная учебная нагрузка (всего)	74
в том числе:	
лекции	54
практические занятия	
лабораторные занятия	20
Самостоятельная работа обучающегося (всего)	20
в том числе:	
Подготовка к ответам на контрольные вопросы по заданным темам,	7
систематизация знаний, подготовка к экзамену	
Подготовка докладов	3
Подготовка к лабораторным занятиям	10
Промежуточная аттестация в форме экзамена (4 семестр)	18

2.2. Тематический план и содержание учебной дисциплины

Наименование разделов и тем	Содержание учебного материала и формы организации деятельности обучающихся	Объем в часах	Уровень освоения, формируемые компетенции, личностные результаты
1	2	3	
Введение	Содержание учебного материала Задачи и значение дисциплины на современном этапе развития общества и в системе подготовки специалистов, ее связь с другими дисциплинами. Классификация и важнейшие направления электроники. Краткая история возникновения и развития электроники. Технология электронных приборов. Область применения электроники. Роль и значение электронной техники на железнодорожном транспорте. Перспективы развития электроники	2	ОК1, ОК2, ПК1.1- ПК1.3, ПК3.2
Раздел 1. Элементная баз	а электронных устройств	32	
Тема 1.1. Пассивные электронные компоненты	Содержание учебного материала Назначение, классификация, конструкция, характеристики и маркировка пассивных элементов электронных схем: резисторов, конденсаторов, катушек, дросселей, трансформаторов. Ряды номиналов радиодеталей Е6, Е12, Е24, Е48 и т.д.	4	ОК1, ОК2, ПК1.1- ПК1.3, ПК3.2
Тема 1.2. Физические основы работы полупроводниковых приборов	Содержание учебного материала Физические основы полупроводников. Структура электронных оболочек атома. Структура кристаллической решетки полупроводников. Энергетическая диаграмма. Собственная и примесная проводимость полупроводников. Генерация и рекомбинация электронно-дырочных пар. Физические процессы в контактных соединениях полупроводников. Структура и механизм возникновения электронно-дырочного перехода. Свойства р-п перехода при наличии внешнего напряжения смещения. Вольтамперная характеристика р-пперехода. Контактная разность потенциалов металл-полупроводник. Пробой электронно-дырочного перехода.	2	ОК1, ОК2, ПК1.1- ПК1.3, ПК3.2
Тема 1.3. Полупроводниковые диоды	Содержание учебного материала Классификация полупроводниковых диодов. Устройство, принцип действия, вольтамперные характеристики диодов различных видов. Выпрямительные диоды,	5	ОК1, ОК2, ПК1.1- ПК1.3, ПК3.2

	устройство, типы диодов по технологическому принципу, маркировка		
	В том числе, лабораторных работ	2	2
	Лабораторная работа № 1 Исследование полупроводниковых выпрямительных		
	диодов.		
	Самостоятельная работа		
	Подготовка к лабораторной работе № 1 Исследование полупроводниковых выпрямительных диодов.	1	
Тема 1.4. Биполярные	Содержание учебного материала	5	ОК1, ОК2,
гранзисторы	Общие сведения о структуре биполярных транзисторов. Устройство, принцип		ПК1.1- ПК1.3,
	действия и схемы включения. Типы транзисторов, определяемые технологией		ПК3.2
	производства. Статические характеристики транзисторов. Схемы с общим эмиттером		
	(ОЭ) и общей базой (ОБ). Система h-параметров, способы их определения.		2
	В том числе, лабораторных работ	2	1
	Лабораторная работа № 2 Исследование типовых схем включения транзисторов.	_	
	Самостоятельная работа	1	
	Подготовка к лабораторной работе № 2 Исследование типовых схем включения транзисторов		
Тема 1.5. Полевые	Содержание учебного материала	5	ОК1, ОК2,
гранзисторы	Полевые транзисторы. Полевые транзисторы с управляющим р-п переходом;		ПК1.1- ПК1.3,
-	устройство, принцип действия, схема включения, статические характеристики, система		ПК3.2
	параметров и способы их определения. Полевые транзисторы с изолированным		
	затвором. МОП-транзисторы со встроенным каналом; МОП-транзисторы с		2
	индуцированным каналом.		
	В том числе, лабораторных работ	2	
	Лабораторная работа № 3 Исследование свойств полевого транзистора в схеме		
	включения с общим истоком.		
	Самостоятельная работа		
	Подготовка к лабораторной работе № 3 Исследование свойств полевого транзистора	1	
	в схеме включения с общим истоком.		
Гема 1.6. Тиристоры	Содержание учебного материала	5	ОК1, ОК2,
	Классификация тиристорных структур. Динистор, симметричный диодный тиристор.		ПК1.1- ПК1.3,
	Триодный тиристор (тринистор); Вольтамперные характеристики, схемы включения и		ПК3.2
	параметры.		
	В том числе, лабораторных работ	2	2

	THE STATE OF	1	
	Лабораторная работа № 4 Исследование свойств тиристоров.		
	Самостоятельная работа	1	
	Подготовка к лабораторной работе № 4 Исследование свойств тиристоров.		
Тема 1.7. Нелинейные	Содержание учебного материала	2	OK1, OK2,
полупроводниковые	Основные определения и классификация полупроводниковых резисторов.		ПК1.1- ПК1.3,
резисторы	Терморезисторы с отрицательным и положительным температурным коэффициентом		ПК3.2
	сопротивления. Варисторы, позисторы; Болометр. Параметры болометров и		
	применение в устройствах железнодорожной автоматики.		2
Тема 1.8.	Содержание учебного материала	3	ОК1, ОК2,
Оптоэлектронные	Законы фотоэффекта и фотоэлектронной эмиссии. Фотоэлектрические и		ПК1.1- ПК1.3,
приборы	светоизлучающие приборы: общие сведения и классификация, принцип работы,		ПК3.2
	характеристики, параметры и применение. Общие сведения об оптоэлектронных		
	приборах.		2
	Преимущества и недостатки приборов оптоэлектроники. Классификация		
	оптоэлектронных полупроводниковых приборов. Полупроводниковые		
	фотоэлектрические (оптоэлектронные) приборы: принцип работы, характеристики,		
	параметры и применение. Оптроны: принцип работы, характеристики, параметры и		
	применение. Полупроводниковые приборы отображения информации –		
	электролюминесцентные, светодиодные и жидкокристаллические. Условное		
	обозначение и маркировка фотоэлектрических, светоизлучающих приборов, оптронов		
	и приборов отображения информации.		
Тема 1.9 Контрольная	Контрольная работа «Элементная база электронных устройств»	1	
работа			
	ехники электронных устройств	49	
Тема 2.1. Источники	Содержание учебного материала	15	OK1, OK2,
питания электронных	Выпрямители. Классификация однофазных выпрямителей.		ПК1.1- ПК1.3,
устройств	Построение, принцип работы и параметры однополупериодной, двухполупериодной		ПК3.2
	и мостовой схем выпрямления. Трехфазные схемы выпрямления. Влияние характера		
	нагрузки на работу выпрямительных схем. Сглаживающие фильтры. Работа на		2
	встречную ЭДС. Зарядные устройства. Широтно-импульсная модуляция. Импульсные		
	источники питания. Стабилизаторы напряжения. Источники стабильного тока.		4
	В том числе, лабораторных работ	6	
	Лабораторная работа № 5 Исследование однофазных выпрямителей.		
	Лабораторная работа № 6 Исследование сглаживающих фильтров.		
	Лабораторная работа № 7 Исследование стабилизатора напряжения.		

	Самостоятельная работа	3	
	Подготовка к лабораторным работам:		
	Лабораторная работа № 5 Исследование однофазных выпрямителей.		
	Лабораторная работа № 6 Исследование сглаживающих фильтров.		
	Лабораторная работа № 7 Исследование стабилизатора напряжения.		
Тема 2.2. Усилители	Содержание учебного материала	14	ОК1, ОК2,
	Назначение и классификация электронных усилителей. Структурная схема		ПК1.1- ПК1.3,
	электронного усилителя. Основные показатели работы усилителей. Обратная связь в		ПК3.2
	усилителях, ее виды, классификация. Влияние обратной связи на основные показатели		
	работы усилителя: коэффициент усиления, чувствительность, выходная мощность.		2
	Схемы включения усилительных элементов в усилителях. Влияние схем включения		
	усилительных элементов на усиление тока или напряжения в усилителе. Виды рабочих		
	режимов усилительных элементов. Краткая характеристика режимов А, В, АВ, С.		
	Способы обеспечения рабочего режима усилительного элемента (транзистора).		
	Способы подачи смещения. Термостабилизация и термокомпенсация положения		
	рабочей точки покоя усилительного элемента. Усилители переменного тока и		
	напряжения. Построение и работа однотактных и двухтактных каскадов усиления.		
	Особенности построения входных и выходных каскадов. Требования, предъявляемые к		
	входным (предварительным), предвыходным (промежуточным) и выходным		
	(оконечным) каскадам усиления. Многокаскадные усилители. Емкостная, резисторная		
	и трансформаторная межкаскадные связи. Способы уменьшения паразитной обрат-		
	ной связи. Построение и работа фазоинверсных каскадов и эмиттерных повторителей.		
	Усилители постоянного тока. Балансные схемы усилителей постоянного тока. Дрейф		
	нуля и способы его уменьшения. Дифференциальные усилители. Операционные		
	усилители. Схемы включения операционных усилителей		
	В том числе, лабораторных работ	4	
	Лабораторная работа № 8 Исследование однотактного усилителя.		
	Лабораторная работа № 9 Исследование схем включения операционных усилителей.		
	Самостоятельная работа	4	
	Подготовка к лабораторным работам № 8,9 Исследование однотактного усилителя.		
	Исследование схем включения операционных усилителей		
	Составить конспекты, подготовить ответы на вопросы по темам:		
	Термостабилизация режимов работы, работа трансформаторных однотактных и		
	двухтактных каскадов, бестрасформаторного двухтактного каскада, многокаскадные		
	усилители.		

Тема 2.3. Генераторы	Содержание учебного материала	7	ОК1, ОК2,
	Общая характеристика и классификация генераторов электрических колебаний.		ПК1.1- ПК1.3,
	Колебательный контур. Свободные колебания в колебательном контуре.		ПК3.2
	Вынужденные колебания в последовательном и параллельном колебательном контуре.		
	Виды параллельных контуров. Вынужденные колебания в связанных контурах.		2
	Принцип построения и работы генератора синусоидальных (гармонических)		
	колебаний. Основные понятия и требования к построению генераторов гармонических		
	колебаний. Автогенератор типа LC. Трехточечные схемы автогенераторов типа LC.		
	Стабилизация частоты генераторов типа LC. Кварцевые генераторы и схемы с		
	применением кварцевых стабилизаторов. Современные методы получения		
	гармонических сигналов. Синтезаторы частоты.		
	Самостоятельная работа	3	
	Подготовить доклад, презентацию на тему: «Генераторы в устройствах автоматики на		
	железнодорожном транспорте»		
Тема 2.4. Электрические	Содержание учебного материала	5	ОК1, ОК2,
фильтры	Электрические фильтры, разновидности, принцип работы, область применения, схемы		ПК1.1- ПК1.3,
	включения. LC-фильтры, RC- фильтры		ПК3.2
	В том числе, лабораторных работ	2	
	Лабораторная работа № 10 Исследование устройства и работы электрических		2
	фильтров типа ЗБФ и ЗБ-ДСШ		
	Самостоятельная работа	1	
	<i>Подготовка к лабораторной работе № 10</i> Исследование устройства и работы		
	электрических фильтров типа ЗБФ и ЗБ-ДСШ		
Тема 2.5. Электронные	Содержание учебного материала	2	ОК1, ОК2,
ключи	Общие сведения об электронных ключах как формирующих нелинейных цепях.		ПК1.1- ПК1.3,
	Основные понятия о диодных и транзисторных ключах, их виды. Принципы		ПК3.2
	построения и работа диодных ключей. Принципы построения и работы транзисторных		
	ключей на биполярных и полевых транзисторах. Транзисторные ключи с внешним		2
	источником смещения. Транзисторный переключатель тока. Диодные и транзисторные		
	ограничители однополярного и двухполярного сигнала		
Тема 2.6. Логические	Содержание учебного материала	3	OK1, OK2,

элементы	Понятия о логических функциях, элементах и логических устройствах в ЦИМС. Основные характеристики и параметры логических элементов. Схемные решения основных логических элементов: транзисторно-транзисторные (ТТЛ, ТТЛШ), эмиттерно-связанные (ЭСЛ), интегрально-инжекционные (И ² Л), на полевых транзисторах и КМОП структурах.		ПК1.1- ПК1.3, ПК3.2
	Самостоятельная работа Обобщение и систематизация знаний по теме. Составление опорных схем ответов на	1	
	контрольные вопросы по теме.		
Тема 2.7. Триггеры	Содержание учебного материала	3	ОК1, ОК2,
• •	Общие сведения о триггерах и их классификация. Принцип построения и работа схем симметричного триггера. Применение триггеров в качестве элементов памяти, делителей частоты. Построение статических и динамических триггеров. Состав схемы, назначение элементов и принцип действия несимметричного триггера Шмитта как формирователя импульсов прямоугольной формы из синусоидального напряжения. Область применения триггеров в устройствах автоматики на железнодорожном транспорте		ПК1.1- ПК1.3, ПК3.2
	Самостоятельная работа	1	
	Обобщение и систематизация знаний по разделу. Составление опорных схем ответов		
Раздел 3. Основы микроэл	на контрольные вопросы по теме.	11	OK1, OK2,
Тема 3.1. Принципы и	Содержание учебного материала	3	ПК1.1- ПК1.3,
технологии построения ИМС	Общие сведения о микроэлектронике. Терминология и классификация интегральных микросхем (ИМС). Система обозначений ИМС. Основные понятия о конструктивнотехнологических особенностях изготовления интегральных микросхем. Основные понятия о методах изоляции элементов и компонентов и методах формирования активных и пассивных элементов и компонентов в ИМС. Схемотехнические		ПК3.2 2
	особенности в ИМС		
	Самостоятельная работа	1	
	Подготовка к экзамену.		
Тема 3.2. Аналоговые ИМС	Содержание учебного материала Общие сведения об аналоговых интегральных микросхемах (АИМС). Особенности построения АИМС для усиления, преобразования и обработки сигналов.	3	ОК1, ОК2, ПК1.1- ПК1.3, ПК3.2
	Самостоятельная работа	1	2

	Подготовка к экзамену.		
Тема 3.3. Цифровые	Содержание учебного материала	5	ОК1, ОК2,
ИМС	Общие сведения о ЦИМС. Логика представления информации в цифровой форме.		ПК1.1- ПК1.3,
	Классификация цифровых интегральных микросхем. Обобщение и систематизация		ПК3.2
	знаний		
	Самостоятельная работа	1	2
	Подготовка к экзамену.		
Промежуточная аттеста	ация – экзамен в 4 семестре	18	
Всего		112	

Для характеристики уровня освоения учебного материала используются следующие обозначения: 1. -ознакомительный (узнавание ранее изученных объектов, свойств);

- 2. репродуктивный (выполнение деятельности по образцу, инструкции или под руководством)
- 3.- продуктивный (планирование и самостоятельное выполнение деятельности, решение проблемных задач)

3. УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ

3.1 Требования к минимальному материально-техническому обеспечению

Учебная дисциплина реализуется в лаборатории «Электронная техника».

Оборудование учебного кабинета:

Рабочие места по количеству обучающихся (стол, стул);

Оборудованное рабочее место преподавателя;

Методическое обеспечение по дисциплине «Электронная техника»;

Раздаточный материал для студентов по дисциплине;

Наглядные пособия.

Плакаты;

стенды для выполнения лабораторных работ:

стенд типа ЭИСЭСНР.001 РЭ (1068);

стенд типа ОМЭИСР.001 РЭ (1097); 17Л-03.

Измерительные приборы: однолучевые электронные осциллографы и мультиметры;

Генератор гармонических колебаний;

Комплект монтажных инструментов (набор отверток, плоскогубцы, бокорезы, паяльник с принадлежностями для пайки, пинцеты, измерительные щупы);

наборы элементов и компонентов: полупроводниковых приборов (диоды, биполярные и полевые транзисторы, тиристоры, оптопары, цифровые и аналоговые микросхемы), резисторы (постоянные и переменные), конденсаторы (постоянные и переменные), малогабаритные дроссели, малогабаритные трансформаторы (импульсные, согласующие, повышающие, понижающие) и др.

лицензионное программное обеспечение компьютеры по количеству обучающихся периферийные устройства (сканер, принтер); мультимедийный проектор;

3.2. Информационное обеспечение реализации программы

Перечень рекомендуемых учебных изданий, дополнительной литературы Интернет-ресурсов, базы данных библиотечного фонда:

3.2.1.Основные источники:

1. Москатов, Е. А., Электронная техника : учебное пособие / Е. А. Москатов. — Москва : КноРус, 2023. — 199 с. — ISBN 978-5-406-11357-8. — URL: https://book.ru/book/948718 (дата обращения: 16.05.2025). — Текст : электронный.

3.2.2.Дополнительные источники:

4. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Контроль и оценка результатов освоения учебного предмета осуществляется преподавателем в процессе проведения теоретических, практических и лабораторных занятий, выполнения обучающимися индивидуальных заданий (подготовки докладов).

Промежуточная аттестация в форме экзамена

Результаты обучения	Критерии оценки	Методы оценки
Перечень знаний, осваиваем	ых в рамках дисциплины:	
 сущность физических процессов, протекающих в электронных приборах и устройствах; принципы включения электронных приборов и построения электронных схем; типовые узлы и устройства электронной техники. 	- обучающийся объясняет сущность физических процессов, происходящих в электронных устройствах; - поясняет принципы включения электронных приборов и построения электронных схем; - перечисляет и характеризует основные типовые узлы и устройств электронной техники.	различные виды устного опроса, тестирование, контрольная работа; оценка выполнения лабораторной работы.
Перечень умений, осваиваем	ых в рамках дисциплины:	
- определять и анализировать основные параметры электронных схем и по ним устанавливать работоспособность устройств электронной техники; - производить подбор элементов электронной аппаратуры по заданным параметрам.	- обучающийся уверенно читает электронные схемы, анализирует и оценивает их работоспособность; - определяет тип и/или номинал электронного компонента по его маркировке;	- оценка результатов выполнения лабораторных работ

Результаты воспитательной работы (формирование личностных результатов)	Формы и методы оценивания сформированности личностных результатов	Нумерация тем в соответствии с тематическим планом
ЛР 10 Заботящийся о защите окружающей среды, собственной и чужой безопасности, в том числе цифровой.	Наблюдение, текущий контроль, экспертная оценка выполнения практического задания, мониторинг самостоятельной работы	Тема 1.1. Пассивные электронные компоненты Тема 1.2. Физические основы работы полупроводниковых
ЛР 13 Готовность обучающегося соответствовать ожиданиям работодателей: ответственный сотрудник, дисциплинированный,	Наблюдение, текущий контроль, экспертная оценка выполнения практического задания, мониторинг самостоятельной работы	приборов Тема 1.3. Полупроводниковые диоды Тема 1.4. Биполярные транзисторы

на достижение поставленных задач, эффективно тема 1.6. Тиристоры взаимодействующий с тема 1.7. Нелинейные полупроводниковые сотрудничающий с другими резисторы	
задач, эффективно Тема 1.6. Тиристоры взаимодействующий с тема 1.7. Нелинейные полупроводниковые сотрудничающий с другими резисторы	трудолюбивый, нацеленный
взаимодействующий с	
членами команды, полупроводниковые сотрудничающий с другими резисторы	задач, эффективно
сотрудничающий с другими резисторы	взаимодействующий с
	членами команды,
v m 10	сотрудничающий с другими
людьми, проектно мыслящий. Тема 1.8.	людьми, проектно мыслящий.
ЛР 25 Способный к Наблюдение, текущий контроль,	ЛР 25 Способный к
генерированию, осмыслению приооры	генерированию, осмыслению
и доведению до конечной практического задания,	и доведению до конечной
реализации предлагаемых мониторинг самостоятельной интания электронных	реализации предлагаемых
инновации.	инноваций.
Тема 2.2. Усилители	
Тема 2.3. Генераторы	
Тема 2.4.	
Электрические	
фильтры	
ЛР 27 Проявляющий Тема 2.5. Электронные	ЛР 27 Проявляющий
способности к непрерывному получили ключи ключи	способности к непрерывному
развитию в области Наблюдение, текущий контроль, Тема 2.6. Логические	развитию в области
профессиональных экспертная оценка выполнения элементы	профессиональных
компетенций и практического задания, Тема 2.7. Триггеры	компетенций и
междисциплинарных знаний. мониторинг самостоятельной Тема 3.1. Принципы и	междисциплинарных знаний.
работы работы	
построения ИМС	
Тема 3.2. Аналоговые	
ИМС	
Тема 3.3. Цифровые	
ИМС	

5.ПЕРЕЧЕНЬ ИСПОЛЬЗУЕМЫХ МЕТОДОВ ОБУЧЕНИЯ

- 5.1. Пассивные: лекции, беседы, опросы, самостоятельная работа, тесты, метод иллюстраций и метод демонстраций
- 5.2. Активные и интерактивные: образовательные видеофильмы, интерактивные игры, творческие задания.