ПРИМЕРНЫЙ ПЕРЕЧЕНЬ ЗАДАНИЙ ДЛЯ ПРОВЕДЕНИЯ ДИАГНОСТИЧЕСКОГО ТЕСТИРОВАНИЯ ПРИ АККРЕДИТАЦИОННОМ МОНИТОРИНГЕ ПО ДИСЦИПЛИНЕ

ОП.05 МАТЕРИАЛОВЕДЕНИЕ

по специальности 23.02.06 Техническая эксплуатация подвижного состава железных дорог

Базовая подготовка среднего профессионального образования

Тестовые задания

3 Теоретические задания (ТЗ)

I «Выберите один правильный ответ»

Простые – по 1баллу.

Тема 1.1. Основы металловедения

1. К механическим свойствам металлов относят:

- А) свариваемость, обрабатываемость резанием.
- Б) цвет, температуру плавления.
- В) растворимость, коррозионную стойкость.
- Г) прочность, твердость, пластичность.

2. Металлическими сплавами называют:

- А) соединение нескольких металлов и не металлов, у которых сохраняются металлические свойства.
- Б) твёрдый раствор внедрения углерода в альфа-железо.
- В) химическое соединение железа с углеродом.
- Г) твёрдый раствор внедрения углерода в гамма-железо.

3. Аллотропия это:

- А) изменение кристаллической структуры металла при изменении температуры.
- Б) переход металла из жидкого состояния в твёрдое.
- В) способность металла сопротивляться разрушению под действием внешних сил.
- Г) свойство материалов восстанавливать свою форму после прекращения действия внешних сил.

4. Кривые охлаждения показывают:

- А) зависимость твердости от процентного содержания компонентов.
- Б) зависимость температуры от времени.
- В) зависимость магнитной проницаемости от температуры.
- Г) зависимость прочности от температуры.

5. Ударная вязкость металла определяется по формуле:

A)
$$HB = \frac{F}{S}$$

Б)
$$KC = \frac{A}{S}$$

B)
$$\sigma = \frac{F_{pasp}}{S}$$

$$\Gamma$$
) $\delta = \frac{l}{l_0}$.

6. Твердость материала определяется числом твердости и рассчитывается по формуле:

A)
$$HB = \frac{F}{S}$$
 ,где F –нагрузка, а S – площадь отпечатка.

Б)
$$KC = \frac{A}{S}$$
 ,где A – работа, а S – площадь сечения образца.

В)
$$\sigma = \frac{F_{pasp}}{S}$$
 , где F_{Pasp} – сила разрушения, а S – площадь сечения образца.

$$\Gamma$$
) $\delta=rac{l}{l_0}$, где 1 – изменение длины, а l_0 – первоначальная длина.

7. Прочность характеризуется пределом прочности и определяется по формуле:

A)
$$HB = \frac{F}{S}$$
 ,где F –нагрузка, а S – площадь отпечатка.

Б)
$$KC = \frac{A}{S}$$
 ,где A – работа, а S – площадь сечения.

$$\sigma = rac{F_{\it pasp}}{S}$$
 , где $F_{\it Pasp}$ – сила разрушения образца, а S – площадь сечения образца.

$$\Gamma$$
) $\mathcal{S} = \frac{l}{l_0}$, где 1 – изменение длины образца, а l_0 – первоначальная длина образца.

8. Огнестойкость- это:

- А) способность материала передавать теплоту сквозь свою толщу от одной своей поверхности к другой в случае, если температура этих поверхностей разная.
- Б) способность материала поглощать при нагревании теплоту.
- В) свойство материала расширяться при нагревании и сжиматься при охлаждении.
- Г) способность материала выдерживать при разрушения воздействия огня и воды в условиях пожара.

9. Теплопроводность- это:

- А) способность материала передавать теплоту сквозь свою толщу от одной своей поверхности к другой в случае, если температура этих поверхностей разная.
- Б) способность материала поглощать при нагревании теплоту.
- В) свойство материала расширяться при нагревании и сжиматься при охлаждении.
- Г) способность материала выдерживать при разрушения воздействия огня и воды в условиях пожара.

10. Теплоёмкость- это:

- А) способность материала передавать теплоту сквозь свою толщу от одной своей поверхности к другой в случае, если температура этих поверхностей разная.
- Б) способность материала поглощать при нагревании теплоту.
- В) свойство материала расширяться при нагревании и сжиматься при охлаждении.
- Г) способность материала выдерживать при разрушения воздействия огня и воды в условиях пожара.

11. Тепловое расширение - это:

- А) способность материала передавать теплоту сквозь свою толщу от одной своей поверхности к другой в случае, если температура этих поверхностей разная.
- Б) способность материала поглощать при нагревании теплоту.
- В) свойство материала расширяться при нагревании и сжиматься при охлаждении.
- Г) способность материала выдерживать при разрушения воздействия огня и воды в условиях пожара.

12. К технологическим свойствам металлов относят:

- А) свариваемость, обрабатываемость резанием.
- Б) цвет, температуру плавления.
- В) растворимость, коррозионную стойкость.
- Г) прочность, твердость, пластичность.

Тема 1.2. Основы теории сплавов Вариант 1

13. Линия АСД является:

- А) линией ликвидус;
- Б) линией солидус;
- В) линией эвтектоидного превращения;
- Г) линией эвтектического превращения.

14. Электрические белые чугуны содержат углерод в количестве:

- A)0,8 %;
- Б) 4,3 %;
- В) До 0,8 %;
- Г) свыше 2,14 %.

15. Структура доэвтектоидной углеродистой стали представляет собой:

- А) перлит + цементит;
- Б) перлит;
- В) ледебурит;
- Γ) перлит + феррит.

16. Изменение концентрации углерода в аустените в заэвтектоидных сталях происходит по линии:

- A)GS:
- Б) PS;
- B) SE;
- Γ) CD.

17. Максимальное содержание углерода в аустените составляет:

- A)0,8 %;
- Б) 6,67 %;
- B) 4,3 %;
- **Γ**) 2,14 %.

18. Цементит представляет собой:

- А) механическую смесь;
- Б) твердый раствор внедрения;
- В) химическое соединение;
- Г) твердый раствор замещения.

19. Чугун называется заэвтектическим, если он содержит:

- А) от 4,3% до 6,67% углерода.
- Б) от 2,14% до 4,3% углерода.
- В) 4,3% углерода.
- Г) от 0,8% до 2,14% углерода.

20. Ледебурит это:

- А) твёрдый раствор внедрения углерода в α-железо.
- $_{\rm E}$ Б) тонкая механическая смесь аустенита и цементита до $_{\rm E}$ С и механическая смесь перлита и цементита после 727 С.
- В) соединение железа с углеродом Fe₃C- карбид железа.
- Г) смесь феррита и цементита.

21. Первичной кристаллизацией называют:

- А) переход металла из одной кристаллической структуры в другую.
- Б) сопротивление тела деформации в поверхностном слое при силовом воздействии.
- В) переход металла из жидкого состояния в твёрдое при изменении температуры.
- Г) способность металла сопротивляться разрушению под действием внешних сил.

22. Перлит это:

- А) Механическая смесь аустенита и цементита.
- Б) Тонкая механическая смесь феррита и цементита.

В) Твёрдый раствор внедрения углерода в а-железо. Г) Механическая смесь перлита и цементита. Вариант 2 23. Линия АЕСГ является: А) линией солидус; Б) линией ликвидус; В) линией эвтектоидного превращения; Г) линией эвтектического превращения. 24. Доэвтектоидные стали содержат углерод в количестве: A)0.8 %; Б) 4,3 %; В) до 0,8 %; Г) свыше 2 %. 25. Структура эвтектического белого чугуна – это: А) перлит; Б) аустенит + ледебурит; В) ледебурит; Γ) ледебурит + цементит. 26. Заэвтектические белые чугуны содержат углерод в количестве: А) свыше 4,3 %; Б) до 4,3%; В) до 0,8 %; Γ) от 0,8 до 2,14 %. 27. Содержание углерода в цементите составляет: A)0,02 %; Б) 4,3 %; B) 6,67 %; Γ) 0,8 %. 28. Перлит представляет собой: А) твердый раствор внедрения; Б) механическую смесь; В) твердый раствор замещения; Г) химическое соединение. 29. Чугуном называют сплав: А) железа с углеродом, причём углерода от 0,8%до 2,14%. Б) железа с углеродом и постоянными примесями, причём углерода от 2,14% до 6,67%. В) железа с углеродом, причём углерода до 2,14% Г) железа с никелем. 30. Твердый раствор внедрения углерода в гамма-железо – это: А) перлит Б) феррит В) аустенит Г) ледебурит 31. Механическая смесь феррита и цементита – это: А) перлит Б) ледебурит В) аустенит Г) сплав 32. Химическое соединение железа с углеродом – это: А) феррит Б) цементит

В) перлит

Г) аустенит
Вариант 3
33. Первичная кристаллизация аустенита начинается на линии:
A)AC;
Б) CD;
B) AE;
Γ) GS.
34. Доэвтектические белые чугуны содержат углерод в количестве: A) до 0,8 %;
Б) свыше 4,3 %;
B) 4,3%;
Г) от 2,14 до 4,3 %.
35. Структура эвтектоидной стали – это:
А) цементит;
Б) ледебурит;
В) феррит;
Γ) перлит.
36. Изменение концентрации углерода в аустените в доэвтектоидных сталях происходит по линии:
A)PS;
Б) SE;
B) GS;
Γ) AC.
37. Заэвтектоидные стали содержат углерод в количестве:
А) от 2,14 до 4,3 %;
Б) 0,8 %;
В) от 0,8 до 2,14 %;
Г) свыше 4,3 %;
38. Феррит представляет собой:
А) химическое соединение;
Б) твердый раствор замещения;
В) механическую смесь;
Г) твердый раствор внедрения.
39. Механическая смесь аустенита и цементита – это:
А) феррит
Б) ледебурит
В) перлит
Г) сплав
40. Структура доэвтектоидной углеродистой стали представляет собой:
А) перлит + цементит
Б) ледебурит
В) перлит + феррит
Г) перлит
41. Цементит представляет собой
А) механическую смесь
Б) твердый раствор внедрения
В) химическое соединение
Г) твердый раствор замещения
42. Твердый раствор внедрения углерода в гамма-железо – это:
А) перлит
Б) феррит
В) аустенит

В) аустенит

Вариант 4

43. Первичная кристаллизация цементита начинается на линии: A)AC; Б) CD; B) AE; Γ) PS. 44. Эвтектоидные стали содержат углерод в количестве: A)0.8 %; Б) до 0,8%; В) от 2,14 до 4,3 %; Γ) от 0,8 до 2,14 %. **45.** Структура эвтектического белого чугуна – это: А) аустенит + перлит; Б) перлит + цементит; В) ледебурит; Γ) ледебурит + цементит. **46.** Структура заэвтектоидной стали – это: А) цементит: Б) перлит + цементит; В) феррит + цементит; Γ) перлит + феррит. 47. Аустенит представляет собой: А) твердый раствор внедрения; Б) химическое соединение; В) твердый раствор замещения; Г) механическую смесь. 48. Структура заэвтектоидной стали – это: А) перлит + цементит Б) феррит + цементит В) перлит + феррит Г) перлит 49. Механическая смесь феррита и цементита – это: А) перлит Б) ледебурит В) аустенит Г) сплав 50. Химическое соединение железа с углеродом – это: А) феррит Б) цементит В) перлит Г) аустенит 51. Механическая смесь аустенита и цементита – это: А) феррит Б) ледебурит В) перлит Г) сплав 52. Твердый раствор внедрения углерода в гамма-железо – это: А) перлит Б) феррит

 Γ) ледебурит

Тема 1.3. Железоуглеродистые, легированные и цветные сплавы Вариант 1

53. Содержание углерода в стали У15 составляет:
A) 15 %;
Б) 0,15%;
B) 1,5 %;
Γ) 0,015%.
54. Структура стали У8А представляет собой:
А) перлит + цеметит;
Б) перлит;
В) цеметит;
Γ) перлит + феррит.
55. Структура стали У40 представляет собой:
А) феррит;
Б) феррит + перлит;
В) перлит;
Γ) перлит + цементит.
56. В серых чугунах углерод содержится в виде графитных частиц:
А) сфероидальной формы
Б) пластинчатой формы
В) хлопьевидной формы
Г) шаровидной формы
57. В ковких чугунах углерод содержится в виде графитных частиц:
А) сфероидальной формы
Б) пластинчатой формы
В) хлопьевидной формы
Г) шаровидной формы
58.Сталь марки 60С2ХА содержит легирующий элемент кремний в количестве примерно
A) 0,6 % B) 2 %
B) 1,5% Γ) 60%
59.Сталь марки 36Х2Н2МФА содержит легирующий элемент никель в количестве
примерно: A) 2 %
Б) 1%
B) 3%
Γ) 36%
60.Сталь марки Р6М5К5 по назначению является:
А) конструкционной
Б) инструментальной
В) конструкционной подшипниковой
Г) электротехнической
61. Закалка заэвтектоидной стали производится по режиму:
А) полной закалки
Б) неполной закалки
В) без выбора режима
Г) поверхностной закалки
62. В нагретом под закалку состоянии эвтектоидная сталь имеет структуру:

А) аустенит

Б) аустенит + цементит В) аустенит + перлит Г) перлит 63. Латуни - это сплавы на основе: А) меди
Б) титана В) алюминия Г) вольфрама 64. В составе сплава марки ЛМцЖ55-3-1 содержится 3 %: А) меди
 Б) марганца В) железа Г) цинка 65. В составе сплава марки БрОЦСН 3-7-5-1 содержится 7 %:
А) олова Б) цинка В) свинца Г) меди
66. Нагрев под закалку заэвтектоидных сталей осуществляется до температуры: А) соответствующей линии ликвидус Б) соответствующей линии солидус В) на 30—50 °C - выше критической точки Ас ₁ Г) до температуры плавления
67. Нагрев стали, при низком отпуске, соответствует температурному интервалу:
A) 150—250 °C Б) 300—500 °C В) 500—700 °C Г) 1000°С 68. Нагрев стали, при среднем отпуске, соответствует температурному интервалу:
A) 150—250 °C; Б) 300—500 °C; В) 500—700 °C Г) 1000—1500 °C. 69. Структура стали в результате высокого отпуска, состоит из:
А) мартенсита; Б) сорбита; В) троостита; Г) перлита. 70. В результате отпуска остаточные напряжения
А) уменьшаются; Б) увеличиваются; В) не изменяются; Г) сначала снижается, а затем возрастает. 71. В результате закалки стали значение твердости:
А) снижается; Б) повышается;

В) не изменяется; Γ) сначала снижается, а затем возрастает.
72. После закалки доэвтектоидная сталь имеет структуру: A) аустенит + феррит; Б) сорбит; B) мартенсит + цементит. Г) мартенсит.
 73. Бронзы - это сплавы на основе: A) алюминия; Б) никеля; В) меди; Г) сначала снижается, а затем возрастает.
74. В марках латуней легирующий элемент свинец обозначается буквой: A) O; Б) C; В) К. Г) сначала снижается, а затем возрастает.
75. Марка сплава Д16 обозначает: А) баббит; Б) латунь; В) дуралюмин. Г) бронза.
76. Марка сплава ЛАЖ1-1 обозначает: А) латунь алюминиево-железную; Б) латунь марганцево-железную; В) литейный алюминиевый сплав. Г) легированная сталь.
77. В составе сплава марки БрОЦСН 3-7-5-1 содержится 7 %:
A) олова;Б) цинка;В) свинца.Г) сначала снижается, а затем возрастает.
Вариант 2
78. Содержание углерода в стали У10 составляет: A) 1 %; B) 0,1%; B) 1,01%; Г) 10%. 79. Содержание углерода в стали У65 составляет: A) 6,5 %; B) 0,65%; B) 0,065 %; C) 65%.

80 Структура стали У7 представляет собой: А) аустенит; Б) перлит; В) перлит + феррит; Γ) перлит + цементит. Структура стали У20 представляет собой: 81. А) феррит; Б) перлит + феррит; В) перлит; Γ) перлит + цементит. 82. В результате закалки стали значение вязкости А) снижается; Б) повышается; В) не изменяется; Г) сначала повышается, а затем снижается. 83. В результате отпуска пластичность и вязкость стали А) уменьшается; Б) увеличивается; В) не изменяется: Г) сначала повышается, а затем снижается. 84. Наиболее значительное снижение твердости происходит в результате: А) низкого отпуска; Б) среднего отпуска; В) высокого отпуска; Γ) закалки. 85. Пересыщенный твердый раствор углерода в а-железе - это: А) перлит: Б) сорбит; В) мартенсит; Γ) аустенит. 86. После закалки эвтектоидная сталь имеет структуру: А) мартенсит; Б) мартенсит + цементит; В) мартенсит + феррит; Г) перлит. 87. В результате закалки стали значение твердости: А) снижается; Б) повышается: В) не изменяется: Г) сначала повышается, а затем снижается. 88. ВЧ 40-15 – маркировка: А) высокопрочного чугуна; Б) ковкого чугуна; В) серого чугуна; Г) высокопрочной стали. 89.Сталь марки 60С2ХА содержит легирующий элемент кремний в количестве примерно: A) 0,6 %; Б) 2%; B) 1,5%; Γ) 60%.

90.Сталь марки 36Х2Н2МФА содержит легирующий элемент никель в количестве примерно: A) 2 %; B) 1%; B) 3%; Г)36%. 91.Легированная сталь, структура которой представлена аустенитом и небольшим количеством карбидов, относится к: A) аустенитному классу; B) перлитному классу; B) карбидному классу; Г) мартенситному классу. 92. СЧ 25 – маркировка:
А) высокопрочного чугуна; Б) ковкого чугуна; В) серого чугуна; Г) сталь углеродистая. 93. Нагрев стали, при низком отпуске, соответствует температурному интервалу:
А) 150—250 °C; Б) 300—500 °C; В) 500—700 °C; Г) 1000—1500 °C. 94. Структура стали, в результате среднего отпуска, представляет собой:
A) мартенсит;Б) троостит;B) сорбит;Г) перлит.
95. В результате отпуска пластичность и вязкость стали
A) уменьшается;Б) увеличивается;В) не изменяется.Γ) сталь углеродистая.
96. Наиболее значительное снижение твердости происходит в результате:
А) низкого отпуска; Б) среднего отпуска; В) высокого отпуска. Г) ступенчатого отпуска.
97. Закалка заэвтектоидной стали производится по режиму:
A) полной закалки;Б) неполной закалки;B) без выбора режима.Γ) ступенчатой закалки.

107. ВЧ 45-10 – маркировка:
А) серого чугуна; Б) высокопрочного чугуна; В) ковкого чугуна. Г) высокопрочная сталь.
108.Сталь марки 45Г2 является: А) углеродистой; Б) легированной;
В) углеродистой обыкновенного качества; Г)высококачественной. 109.Сталь марки ШХ15 по назначению является:
А) конструкционной;Б) инструментальной;В) конструкционной подшипниковой;
Г)быстрорежущей. 110.Сталь марки 45XH2MФA содержит легирующий элемент никель в количестве примерно:
A) 45%; Б) 4%; B) 2%; Γ) до 1%.
111. Сталь марки 7X3 содержит легирующий элемент хром в количестве примерно: A) 7%; Б) 3%; В) 2%; Г) до 1%.
112. В нагретом под закалку состоянии эвтектоидная сталь имеет структуру:
А) аустенит; Б) аустенит + цементит; В) аустенит + перлит; Г) перлит. 113. Нагрев стали, при низком отпуске, соответствует температурному интервалу:
A) 150—250 °C; B) 300—500 °C; B) 500—700 °C. Γ) 1000—1500 °C.
114. Структура стали, в результате среднего отпуска, представляет собой:
 A) мартенсит; Б) троостит; B) сорбит; Г) перлит. 115. В результате отпуска пластичность и вязкость стали
A) уменьшается;Б) увеличивается;B) не изменяется;Γ) сначала повышается, а затем снижается.

116. Наиболее значительное снижение твердости происходит в результате:
А) низкого отпуска; Б) среднего отпуска; В) высокого отпуска; Г) ступенчатого отпуска.
117. Укажите температуру нагрева под закалку для стали У8:
A) 770 °C; Б) 1000 °C; В) 700 °C. Г) 1500 °C. 118. В результате закалки стали значение вязкости:
А) снижается; Б) повышается; В) не изменяется. Г) сначала повышается, а затем снижается. 119. После закалки эвтектоидная сталь имеет структуру:
А) мартенсит; Б) мартенсит + цементит; В) мартенсит + феррит. Г) перлит. 120. Закалка доэвтектоидной стали производится по режиму:
А) полной закалки; Б) неполной закалки; В) без выбора режима; Г) ступенчатой закалки.
121. В результате охлаждения со скоростью выше критической аустенит переходит в структуру:
А) перлит; Б) мартенсит; В) феррит; Г) цементит. 122. Укажите температуру нагрева под закалку для стали У10:
A) 1200 °C; Б) 760 °C; В) 800 °C; Г) 1500 °C. 123. Дуралюмины - это сплавы на основе:
A) титана;Б) алюминия;B) магния;Г) меди.

124. В марках латуней легирующий элемент никель обозначается буквой:
А) Мц; Б) Н; В) Ц. Г) К. 125. Марка сплава Л96 обозначает:
 A) латунь; Б) дуралюмин; В) бронзу. Г) медь. 126. Марка сплава БрОЦС5-7-5 обозначает:
А) оловянисто-цинково-свинцовистую бронзу; Б) оловянисто-цинково-кремниевую бронзу; В) оловянисто-цинковую бронзу. Г) латунь. 127. В составе сплава марки ЛМцЖ55-3-1 содержится 3 %:
A) меди;Б) марганца;B) железа.Г) алюминий.Вариант 4
•
128. Содержание углерода в стали У20 составляет: A) 0,2 %; Б) 2,0% B) 20%; Г) 0,1%. 129. Содержание углерода в стали У12 составляет: A) 12%; Б) 1,2%; B) 0,12 %; Г) 0,012%. 130. Структура стали У10А представляет собой: A) феррит; Б) перлит + феррит; B) перлит + цементит; Г) цементит. 131. КЧ 37-12 – маркировка:
А) высокопрочного чугуна; Б) ковкого чугуна; В) серого чугуна; Г) ковкая сталь.
132. Сталь марки 38 ХГН содержит легирующий элемент хром в количестве примерно: A) 38%; Б) до 1,5; В) 0,38%;

Г) до 1%.
,
133.Сталь марки 4XB2C содержит легирующий элемент вольфрам в количестве примерно:
A) 4%;
Б) 2%;
B) 1%;
Г) до 1%.
134.В стали марки 20ХЗМВФ отсутствует легирующий элемент:
А) никель;
Б)молибден;
В)вольфрам.
Г) ванадий.
135.Легированная сталь, имеющая мартенситную структуру, относится к:
А) аустенитному классу;
Б) карбидному классу;
В) мартенситному классу;
Г) высокопрочному классу.
136.Сталь марки Р6М5К5 по назначению является:
А) конструкционной;
Б) инструментальной;
В) конструкционной подшипниковой;
Г) электротехнической.
137. Легированная сталь, структура которой представлена перлитом и некоторым
количеством феррита или карбидов, относится:
А)ферритному классу;
Б)перлитному классу;
В)карбидному классу;
Г)мартенситному классу.
138.Сталь марки 35ХМ по назначению является:
А) конструкционной;
Б) инструментальной;
В) конструкционной подшипниковой.
Г) электротехнической.
1) электротехнической. 139.Сталь марки 40XФА содержит легирующий элемент ванадий в количестве примерно:
, 1
139.Сталь марки 40ХФА содержит легирующий элемент ванадий в количестве примерно:
139.Сталь марки 40XФА содержит легирующий элемент ванадий в количестве примерно: A) 0,5%;
139.Сталь марки 40ХФА содержит легирующий элемент ванадий в количестве примерно: A) 0,5%; Б) до 1%;
139. Сталь марки 40 ХФА содержит легирующий элемент ванадий в количестве примерно: A) 0,5%; B) до 1%; B) 5%; Г) 40%.
139. Сталь марки 40 ХФА содержит легирующий элемент ванадий в количестве примерно: A) 0,5%; Б) до 1%; В) 5%;
139.Сталь марки 40ХФА содержит легирующий элемент ванадий в количестве примерно: A) 0,5%; B) до 1%; B) 5%; Г) 40%. 140.Сталь марки 3ХЗМЗФ содержит легирующий элемент молибден в количестве примерно: A) 3%;
139.Сталь марки 40ХФА содержит легирующий элемент ванадий в количестве примерно: A) 0,5%; B) до 1%; B) 5%; Г) 40%. 140.Сталь марки 3ХЗМЗФ содержит легирующий элемент молибден в количестве примерно: A) 3%; B) 6%;
139.Сталь марки 40ХФА содержит легирующий элемент ванадий в количестве примерно: A) 0,5%; B) до 1%; B) 5%; Г) 40%. 140.Сталь марки 3ХЗМЗФ содержит легирующий элемент молибден в количестве примерно: A) 3%; B) 6%; B) 9%;
139.Сталь марки 40ХФА содержит легирующий элемент ванадий в количестве примерно: A) 0,5%; B) до 1%; B) 5%; Г) 40%. 140.Сталь марки 3ХЗМЗФ содержит легирующий элемент молибден в количестве примерно: A) 3%; B) 6%; B) 9%; Г)до 1%.
139.Сталь марки 40ХФА содержит легирующий элемент ванадий в количестве примерно: A) 0,5%; B) до 1%; B) 5%; Г) 40%. 140.Сталь марки 3ХЗМЗФ содержит легирующий элемент молибден в количестве примерно: A) 3%; B) 6%; B) 9%; Г)до 1%. 141. Закалка заэвтектоидной стали производится по режиму:
139.Сталь марки 40ХФА содержит легирующий элемент ванадий в количестве примерно: A) 0,5%; B) до 1%; B) 5%; Г) 40%. 140.Сталь марки 3ХЗМЗФ содержит легирующий элемент молибден в количестве примерно: A) 3%; B) 6%; B) 9%; Г)до 1%. 141. Закалка заэвтектоидной стали производится по режиму: A) полной закалки;
139.Сталь марки 40ХФА содержит легирующий элемент ванадий в количестве примерно: A) 0,5%; B) до 1%; B) 5%; Г) 40%. 140.Сталь марки 3ХЗМЗФ содержит легирующий элемент молибден в количестве примерно: A) 3%; B) 6%; B) 9%; Г)до 1%. 141. Закалка заэвтектоидной стали производится по режиму: A) полной закалки; B) неполной закалки;
139.Сталь марки 40ХФА содержит легирующий элемент ванадий в количестве примерно: A) 0,5%; B) до 1%; B) 5%; Г) 40%. 140.Сталь марки 3ХЗМЗФ содержит легирующий элемент молибден в количестве примерно: A) 3%; B) 6%; B) 9%; Г)до 1%. 141. Закалка заэвтектоидной стали производится по режиму: A) полной закалки; B) без выбора режима;
139.Сталь марки 40ХФА содержит легирующий элемент ванадий в количестве примерно: A) 0,5%; B) до 1%; B) 5%; Г) 40%. 140.Сталь марки 3ХЗМЗФ содержит легирующий элемент молибден в количестве примерно: A) 3%; B) 6%; B) 9%; Г)до 1%. 141. Закалка заэвтектоидной стали производится по режиму: A) полной закалки; B) неполной закалки; B) без выбора режима; Г) ступенчатой закалки.
139.Сталь марки 40ХФА содержит легирующий элемент ванадий в количестве примерно: A) 0,5%; B) до 1%; B) 5%; Г) 40%. 140.Сталь марки 3ХЗМЗФ содержит легирующий элемент молибден в количестве примерно: A) 3%; B) 6%; B) 9%; Г)до 1%. 141. Закалка заэвтектоидной стали производится по режиму: A) полной закалки; B) без выбора режима;
139.Сталь марки 40ХФА содержит легирующий элемент ванадий в количестве примерно: A) 0,5%; B) до 1%; B) 5%; Г) 40%. 140.Сталь марки 3Х3М3Ф содержит легирующий элемент молибден в количестве примерно: A) 3%; B) 6%; B) 9%; Г)до 1%. 141. Закалка заэвтектоидной стали производится по режиму: A) полной закалки; B) неполной закалки; B) без выбора режима; Г) ступенчатой закалки. 142. Пересыщенный твердый раствор углерода в α-железе - это:
139. Сталь марки 40 XФA содержит легирующий элемент ванадий в количестве примерно: A) 0,5%; B) до 1%; B) 5%; Г) 40%. 140. Сталь марки 3 X 3 M 3 Ф содержит легирующий элемент молибден в количестве примерно: A) 3%; B) 6%; B) 9%; Г)до 1%. 141. Закалка заэвтектоидной стали производится по режиму: A) полной закалки; B) неполной закалки; B) без выбора режима; Г) ступенчатой закалки. 142. Пересыщенный твердый раствор углерода в α-железе - это: A) перлит;
139.Сталь марки 40ХФА содержит легирующий элемент ванадий в количестве примерно: A) 0,5%; B) до 1%; B) 5%; Г) 40%. 140.Сталь марки 3Х3М3Ф содержит легирующий элемент молибден в количестве примерно: A) 3%; B) 6%; B) 9%; Г)до 1%. 141. Закалка заэвтектоидной стали производится по режиму: A) полной закалки; B) неполной закалки; B) без выбора режима; Г) ступенчатой закалки. 142. Пересыщенный твердый раствор углерода в α-железе - это:

Г) аустенит.
143. Нагрев стали, при высоком отпуске, соответствует температур
ному интервалу:
A) 150—250 °C;
Б) 300—500°С;
B)500—500°C;
,
Γ) 1000°C.
144. Структура стали, в результате низкого отпуска, представляет собой:
А) мартенсит;
Б)троостит;
В) сорбит;
Г) перлит.
145. В результате отпуска твердость и хрупкость стали
А) снижаются;
Б) возрастают;
В) не изменяются.
Г) сначала снижается, а затем возрастает.
146. Незначительное снижение твердости происходит в результате:
то педа штельное спижение твердости происходит в результате.
А) низкого отпуска;
Б) среднего отпуска;
В) высокого отпуска;
Г) высокого отпуска.
147. Цементит в сорбите отпуска имеет форму:
А) пластинок;
Б) зерен;
В) хлопьев.
Γ) mapa.
148. Латуни - это сплавы на основе:
А) меди;
Б) титана;
В) алюминия;
Г) алюминия.
149. В марках бронзы легирующий элемент железо обозначается буквой:
А) Ф;
Б) Ж;
B) C;
Γ) A.
150. Марка сплава БрОЦ4-3 обозначает:
А) латунь;
Б) бронзу;
В) силумин;
Г) сталь.
151. Марка сплава АЛ2 обозначает:
А) алюминиевую латунь;

Б) литейный алюминиевый сплав; В) алюминиевую бронзу; Г) алюминий марки 2. 152. В составе сплава марки Б16 содержится 16 %: А) цинка; Б) олова; В) меди. Г) бериллия. Раздел 2. Электротехнические материалы Тема 2.1. Проводниковые, полупроводниковые, диэлектрические и магнитные материалы Вариант 1 153. К проводниковым материалам относится: А) медь; Б) бумага электротехническая; В) кремний Γ) воздух. 154. Манганины являются материалами: А) с высокой проводимостью; Б) с высоким сопротивлением; В) обладающими свойствами диэлектрика; Г) обладающими свойствами полупроводника. 155. Обмоточные провода применяют для: А) изготовления обмоток электрических машин, аппаратов и приборов; Б) соединения различных приборов; В) распределения электрической энергии. Г) воздушных линий электропередачи. 156. Токопроводящие жилы монтажных проводов изготавливают из: А) меди; Б) никеля; В) молибдена; Г) вольфрама. 157. Пермаллои – сплавы железа с никелем, относящиеся к: А) проводниковым материалам; Б) магнитомягким материалам; В) магнитотвердым материалам; Г) полупроводниковым материалам. 158.Электрическая прочность, определяется по формуле: A) $E_{np}=U_{np}/h$ Б) $E_{np}=U/I$ $B)U_{np}=RI$ Γ)E= $|\Phi/t|$ 159. Ёмкость С плоского конденсатора определяется по формуле: A)C= E_a /S

Б)C = 0.0884 E S(n-1)/d

B)C= 0,241 E l
Γ)C=q/U
160. Температурный коэффициент удельного сопротивления определяется по формуле: A) ТК $p = l_1 - l_0 / l_0 (T_1 - T_0)$
Б) ТК $p=M_1-M_0/M_1$ (T_1-T_0)
B) TK $p = p_1 - p_2/p_1 (T_1 - T_2)$
Γ) TK $p=RL/S$.
161. Текстолит состоит из:
А) нескольких слоёв специальной бумаги, пропитанной бакелитовым лаком.
Б) нескольких слоёв капроновой или хлопчатобумажной ткани, пропитанной бакелитовой смолой
В) нескольких слоёв бесщёлочной стеклоткани, пропитанной кремнийорганической смолой. Г) нескольких слоев шпона.
162. С ростом температуры сопротивление диэлектриков:
А) возрастает.
Б) уменьшается.
В) остается постоянным.
Γ) сначала возрастает до T_k , а потом остается неизменным.
Вариант 2
163. К полупроводниковым материалам относится:
А) сталь;
Б) селен;
В) медь;
Г) графит.
164. Серебро является материалом:
А) с высокой проводимостью;
Б) с высоким сопротивлением;
В) обладающим свойствами полупроводника;
Г) обладающим свойствами диэлектрика.
165.Монтажные провода применяют для:
А) соединения различных приборов и частей в электрических аппаратах;
Б) распределения электрической энергии;
В) распределения воздушных линий электропередачи;
Г) изготовления обмоток машин.
166.В качестве проводникового материала в обмоточных проводах применяют:
А) медь;
Б) цинк;
В) вольфрам;
Г) серебро. 167. Микафолий - материал на основе:
А)ртути;
Б) слюды;
В) меди;
Г) стекла.

168. Дипольная поляризация диэлектриков это:

- А) векторная величина, её направление совпадают с направлением электрического момента от отрицательного заряда к положительному;
- Б) процесс упорядочения связанных электрических зарядов под действием приложенного напряжения;
- В) смещение электронных орбит относительно положительного заряда ядра под действием внешнего электрического поля;
- Г) процесс соединения молекул исходного вещества без изменения его элементарного состава в большие молекулы высокополимерного вещества.

169. Как называют электроизоляционные составы изготовляемые из нескольких исходных веществ (смол, битумов, масел):

- А) лаки;
- Б) компаунды;
- В) эмали;
- Г) электроизоляционные картоны.

170. Способность диэлектриков функционировать при повышенных температурах или при резкой смене температур без ухудшения свойств, называется:

- А) нагревостойкость;
- Б) упругость;
- В) теплопроводность;
- Г) прочность.

171.С ростом температуры электрическое сопротивление проводников:

- А) возрастает;
- Б) убывает;
- В) остаётся постоянным;
- Γ) сначала убывает, а после определённого значения температуры T_{κ} , не изменяется.

172. Манганин- это сплав, содержащий:

- А) 60%-меди, 40%-никеля;
- Б) 84-86% меди, 2-3% никеля и 12-13% марганца;
- В) 65% олова, 25% никеля, 10% марганца;
- Г) 40% свинца, 50% меди и 10% алюминия.

Вариант 3

173. К диэлектрическим материалам относится:

- А) воздух;
- Б) бронза;
- В) латунь;
- Г) селен.

174. Кремний является материалом:

- А) с высокой проводимостью;
- Б) с высоким сопротивлением;
- В) обладающим свойствами полупроводника:
- Г) обладающим свойствами диэлектрика.

175. Установочные провода и шнуры применяют для:

- А) изготовления обмоток электрических машин;
- Б) присоединения к сети электродвигателей;
- В) соединения различных частей в электрических машинах;
- Г) воздушных линий электропередачи.

176. Токопроводящие жилы монтажных проводов изготавливают из:

- А) хрома;
- Б) вольфрама;
- В) алюминия;
- Г) титана.

177. Электрические изоляторы изготавливаются из:

- А)бумаги;
- Б) стали;
- В) меди;
- Γ) фарфора.

178. Мусковит – это:

- А) калиевая слюда с серебристым цветом, имеющая нагревостойкость 500°С;
- Б) калиево-магнезиальное слюда с черным цветом, не изменяющая своих характеристик до 800°С;
- В) листовой твердый материал, изготовленный склеиванием смолой листочков щепаной слюды;
- Г) рулонный материал, состоящий из нескольких слоев слюды, наклеенных на плотную телефонную бумагу.

179.Компаунды – это:

- А) растворы пленкообразующих веществ в органических растворителях;
- Б) лаки с введенными в них пигментами;
- В) жаростойкие проводниковые материалы;
- Г) электроизоляционные составы, изготовляемые из смеси смол и битумов.

180. Гетинакс – это:

- А) листовой слоистый материал, в котором наполнителем являются листы пропитанной бумаги толщиной 0,1-0,12 мм;
- Б) листовой слоистый материал, в котором наполнителем является хлопчатобумажная ткань;
- В) листовой слоистый материал, в котором наполнителем является бесщелочная стеклянная ткань;
- Г) листовой слоистый материал, в котором наполнителем является бесщелочная стеклянная ткань.

181. Сверхпроводимость- это:

- А) явление увеличения сопротивления проводника при возрастании температуры;
- Б) явление уменьшения магнитной проницаемости до нуля, при определенной температуре;
- В) явление перехода в жидкое состояние:
- Г) явление резкого уменьшения сопротивления проводника до нулевых значений, при низких температурах.

182. Диэлектрики- это вещества, обладающие следующими свойствами:

- A) $\rho = 10^{-8} 10^{-5}$ OM M, TK p>0; B) $\rho = 10^{-8} 10^{18}$ OM M, TK p>0;
- B) $\rho = 10^{-6} 10^7$ Om m, TK p<0;
- Γ) $\rho = 10^8 10^{18}$ Om m, TK p<0.

Вариант 4

183.С ростом температуры электрическое сопротивление проводников:

- А) возрастает;
- Б) убывает;
- В) остаётся постоянным;
- Γ) сначала убывает, а после определённого значения температуры T_{κ} , не изменяется.

184.На какие группы делят проводниковые материалы?

- А) металлические и неметаллические;
- Б) простые и сложные;
- В) активные и пассивные;
- Г) материалы высокой проводимости и сплавы высокого сопротивления.

185. Удельное сопротивление проводников, определяется по формуле:

- A)p = R S / l;
- Б) p=U/I;
- B) $p=Q^2$ R t;
- Γ) R=U/I.

186.Пермаллой- это магнитный сплав, содержащий:

- А) 5,4 % кремния, 9,6 % алюминия и 85 % железа;
- Б) железо и никель (от 40% до 80%):
- В) железо и углерод до 2,14%;
- Г) меди и цинка.

187.Мусковит – это:

- А) калиевая слюда с серебристым цветом, имеющая нагревостойкость 500°С;
- Б) калиево-магнезиальное слюда с черным цветом, не изменяющая своих характеристик до 800°C;
- В) листовой твердый материал, изготовленный склеиванием смолой листочков щепаной слюды;
- Г) рулонный материал, состоящий из нескольких слоев слюды, наклеенных на плотную телефонную бумагу.

188.Компаунды – это:

- А) растворы пленкообразующих веществ в органических растворителях.
- Б) лаки с введенными в них пигментами.
- В) жаростойкие проводниковые материалы.
- Г) электроизоляционные составы, изготовляемые из смеси смол и битумов.

189. Гетинакс – это:

- А) листовой слоистый материал, в котором наполнителем являются листы пропитанной бумаги толщиной 0,1-0,12 мм.
- Б) листовой слоистый материал, в котором наполнителем является хлопчатобумажная ткань.
- В) листовой слоистый материал, в котором наполнителем является бесщелочная стеклянная ткань.
- Г) природный минерал, слоистого строения.

190.Константан- это сплав, содержащий:

- А) 54% меди, 1% марганца и 45% никеля.
- Б) 86% меди, 12% марганца и 2% никеля.
- В) 0,7% марганца,0,6% никеля, 12-15% хрома, 3,5% алюминия, остальное железо.
- Г) железо и никеля (от 40 до 80%).

191. Проводники- это вещества, обладающие следующими свойствами:

- A) $p=10^{-8}-10^{-5}$ OM M, TK p>0.
- Б) $p=10^8-10^{18}$ Ом м, ТК p>0. В) $p=10^{-6}-10^7$ Ом м, ТК p<0.
- Γ) p=10⁸-10¹⁸ Om M, TK p<0.

192. К магнитным материалам относится:

- А) алюминий;
- Б) стекло;
- В) пластмасса;
- Г) электротехническое железо.

Раздел 3-6. Экипировочные, полимерные композиционные и защитные материалы.

Вариант 1

193. Основным компонентом пластмасс является:

- А) пластификатор;
- Б) полимер;
- В) наполнитель;
- Г) стабилизатор.

194.Для внутренней облицовки железнодорожных вагонов используют:

- А) асбест;
- Б) каучук;
- В) резину;
- Г) гетинакс.

195. Присутствие воды в дизельном топливе

- А) не допускается;
- Б) допускается в ограниченном количестве;
- В) нормируется ГОСТом;
- Г) допускается в любом количестве.

196. Коксуемость дизельного топлива зависит от:

- А) фракционного состава;
- Б) степени очистки;
- В) фракционного состава и степени очистки;
- Г) температуры вспышки.

197. Минеральные масла, допускаемые к эксплуатации, должны иметь:

- А) незначительную зольность;
- Б) зольность определенного значения;
- В) любую зольность;
- Γ) высокую зольность.

198. Механические примеси в пластичных смазках

- А) не допускаются;
- Б) допускаются в ограниченном количестве;
- В) допускаются в любом количестве;
- Г) допускаются в ограниченном количестве.

199. Косвенным показателем наличия легких углеводородов в минеральном масле является:

- А) температура воспламенения;
- Б) температура вспышки;
- В) температура застывания;
- Г) коксуемость.

200. При попадании воды в минеральное масло его смазывающая способность:

- А) не изменяется;
- Б) улучшается;
- В) ухудшается;
- Г) сначала улучшается, а затем ухудшается.

201. Присутствие водорастворимых кислот и щелочей в дизельном топливе:

А) допускается;

Б) не допускается; В) нормируется ГОСТом; Г) допускается в ограниченном количестве. 202. Минеральные масла со следами водорастворимых кислот и щелочей к эксплуатации А) не пригодны; Б) ограниченно пригодны; В) не предпочтительны; Г) предпочтительны.
Вариант 2
203. Для повышения текучести и снижения температуры стеклования в состав пластмасс вводят:
 А) полимер; Б) пластификатор; В) краситель Г) наполнитель; 204. Резина - это материал, получаемый на основе:
A) древесины; Б) стали; В) полимера; Г) каучука.
205. Процентное содержание изооктана в проверяемом карбюраторном топливе называется:
А) октановым числом; Б) цетановым числом; В) бутановым числом; Г) критическим числом. 206. Вязкость дизельного топлива должна быть: А) низкой; Б) высокой; В) нормируемой ГОСТом;
Г) в оптимальных пределах. 207. Содержание свободной щелочи и органических кислот в пластичных смазках
А) допускается в минимальном количестве в соответствии с ГОСТом; Б) не допускается; В) в оптимальных пределах; Г) допускается в любом количестве. 208. Отложение накипи в теплообменник аппаратах тепловозов и дизель-поездов приводит к:
 А) повышению температуры подогреваемой воды; Б) снижению температуры подогреваемой воды; В) повышению мощности; Г) повышению производительности аппаратов. 209. Значительное увеличение цетанового числа приводит к: А) повышению мощности двигателя; Б) повышению экономичности работы двигателя;

- В) повышению производительности
- Г) понижению мощности и экономичности работы двигателя.

210. Присутствие воды в дизельном топливе:

- А) не допускается;
- Б) допускается в ограниченном количестве;
- В) нормируется ГОСТом;
- Г) допускается в любом количестве.

211. Минеральные масла, допускаемые к эксплуатации, должны иметь:

- А) незначительную зольность;
- Б) значительную зольность;
- В) любую зольность;
- Г) повышенную зольность.

Вариант 3

212. Пластмассам с волокнистыми наполнителями относятся:

- А) текстолит;
- Б) поропласты;
- В) асбоволокниты;
- Г) гетинакс.

213. Механические примеси в дизельном топливе

- А) допускаются;
- Б) не допускаются;
- В) нормируется ГОСТом;
- Г) допускаются в определенных границах.

214. Антидетонаторы, добавленные к карбюраторному топливу,

- А) не изменяют его антидетонационные свойства;
- Б) понижают его антидетонационные свойства;
- В) повышают вязкость;
- Г) повышают его антидетонационные свойства.

215. Минеральные масла со следами водорастворимых кислот и щелочей к эксплуатации

- А) не пригодны;
- Б) ограниченно пригодны;
- В) не предпочтительны;
- Г) предпочтительны.

216. Пластичные смазки можно применять при температуре:

- А) каплепадения;
- Б) ниже температуры каплепадения;
- В) кипения;
- Г) выше температуры каплепадения.

217. Порядок нанесения лакокрасочных покрытий следующий:

- А) грунт, шпатлевка, красочный слой, покровный слой;
- Б) шпатлевка, грунт, красочный слой, покровный слой;
- В) шпатлевка, красочный слой, покровный слой;
- Г) шпатлевка, грунт, покровный слой, красочный слой.

218. Для понижения температуры застывания нефтяных масел в их состав вводят:

А) вязкостные присадки;

- Б) депрессорные присадки; В) пластификаторы; Г) противоокислительные присадки. 219. Процентное содержание изооктана в проверяемом топливе называется: А) октановым числом; Б) цетановым числом; В) бутановым числом; Г) критическим числом. 220. Механические примеси в дизельном топливе А) допускаются; Б) не допускаются; В) нормируется ГОСТом; Г) допускаются в определенных границах. 221. Противоокислительные присадки к смазочным маслам А) повышают устойчивость масел против окисления; Б) понижают устойчивость масел против окисления; В) повышают его антидетонационные свойства; Г) не влияют на устойчивость масел против окисления. Вариант 4 222. Для придания цвета полимерным материалам используют: А) пластификаторы; Б) наполнители: В) полимеры; Г) красители. 223. Присутствие водорастворимых кислот и щелочей в дизельном топливе А) допускается; Б) не допускается; В) нормируется ГОСТом; Г) допускается в ограниченном количестве. 224. Процентное содержание цетана в проверяемом топливе называется: А) октановым числом; Б) цетановым числом; В) бутановым числом; Г) критическим числом. 225. Противоокислительные присадки к смазочным маслам:
 - А) повышают устойчивость масел против окисления;
 - Б) понижают устойчивость масел против окисления;
 - В) повышают температуру окисления;
 - Г) не влияют на устойчивость масел против окисления.

226. Температура вспышки осевого масла по сравнению с его рабочей температурой должна быть:

А) выше;

- Б) ниже;
- В) значительно выше.
- Г) значительно ниже.

227. Специальная обработка масел, потерявших в процессе использования первоначальные качества, называется:

- А) дегазацией;
- Б) детонацией;
- В) детонацией;
- Г) дегенерацией.

228. Присутствие серы в дизельном топливе:

- А) допускается до 0,5 %;
- Б) не допускается;
- В) нормируется ГОСТом;
- Г) не ограничивается.

229. Температура эксплуатации дизельного топлива должна быть:

- А) выше температуры воспламенения;
- Б) ниже температуры застывания;
- В) ниже температуры вспышки;
- Γ) не зависит от температуры застывания.

230. Трансформаторное масло в трансформаторе предназначено для выполнения:

- А) смазочных функций;
- Б) функций диэлектрика;
- В) функций проводника;
- Г) охлаждения и функций диэлектрика.

231. Повышение цетанового числа топлива приводит:

- А) к более равномерному его сгоранию;
- Б) к менее равномерному его сгоранию;
- В) к повышению температуры окисления;
- Г) не оказывает влияния на процесс сгорания топлива.

Ключи к тестам:

Тема 1.1

№ вопроса	1	2	3	4	5	6	7	8	9	10	11	12
Правильный												
ответ	Γ	Α	Α	Б	Б	Α	В	Γ	Α	Б	В	Α
Вариант 1												

Тема 1.2

10114 1.2										
№ вопроса	1	2	3	4	5	6	7	8	9	10
Правильный ответ Вариант 1	A	Б	Γ	В	Γ	В	A	Б	В	Б
Вариант 2	A	В	В	A	В	Б	Б	В	A	Б
Вариант 3	A	Γ	Γ	В	В	Γ	Б	В	В	В
Вариант 4	Б	A	В	Б	A	A	A	Б	Б	В

Тема 1.3

Nº	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
вопроса	•	1	v		,	Ů	•	,	`	10															
Правиль-												1	1						,		,	-	,		_
ный ответ	В	Б	Б	Б	В	Б	A	Б	Б	A	A	Б	Б	В	A	Б	В	Α	Б	Γ	В	Б	В	Α	Б
Вариант 1																									
Вариант 2	A	A	В	Γ	A	Б	В	В	A	Б	A	Б	A	A	В	A	В	Б	В	Б	Б	Б	В	В	В
Вариант 3	A	Б	A	Γ	Б	В	В	В	Б	A	A	Б	Б	В	A	A	A	A	Б	Б	Б	Б	A	A	Б
Вариант 4	Б	Б	В	Б	Γ	Б	A	В	Б	Б	A	Б	A	Б	В	В	A	A	A	A	A	Б	Б	Б	Б

Раздел 2

№ вопроса	1	2	3	4	5	6	7	8	9	10
Правильный ответ Вариант 1	A	Б	A	A	Б	A	Γ	В	Б	Б
Вариант 2	Б	A	A	A	Б	Б	Б	A	A	Б
Вариант 3	A	В	Б	В	Γ	A	Γ	A	Γ	Γ
Вариант 4	A	Γ	A	Б	A	Γ	A	A	A	Γ

Раздел 3-6

№ вопроса	1	2	3	4	5	6	7	8	9	10
Правильный ответ Вариант 1	Б	Γ	A	В	A	A	A	В	В	A
Вариант 2	Б	Γ	A	Γ	A	Б	Б	Γ	A	A
Вариант 3	В	Б	Γ	Б	Б	Б	Б	A	Б	A
Вариант 4	Γ	Γ	Б	A	A	Γ	В	В	Γ	A

Критерии оценки:

3.2.Время на выполнение:

– 1 минута на 1 задание;

3.3. Критерии оценки

	Оценка	Критерии: правильно выполненные задания
5	«онрицто»»	от 85% до 100%
4	«хорошо»	от 75% до 85%
3	«удовлетворительно»	от 61% до 75%
2	«неудовлетворительно»	до 61%